MD Simulations Tutorial
Learn how to run molecular dynamics simulations for ion exchange membranes using GROMACS through OHMind.
Table of Contents
- Overview
- Prerequisites
- Part 1: System Preparation
- Part 2: Running Simulations
- Part 3: Analysis
- Part 4: Advanced Workflows
- Expected Outputs
- Troubleshooting
- Next Steps
- See Also
Overview
Difficulty: 🟡 Intermediate
Time: 60 minutes
Requirements: GROMACS installed and on PATH
In this tutorial, you will:
- Build a polymer system from SMILES
- Parameterize molecules with force fields
- Set up and run MD simulations
- Analyze trajectories for IEM properties
What is MD in OHMind?
OHMind integrates with GROMACS to perform molecular dynamics simulations for Ion Exchange Membranes (IEMs). This enables:
- Property prediction - Water uptake, conductivity, swelling
- Structure analysis - Morphology, ion distribution
- Dynamics - Diffusion coefficients, transport mechanisms
- Temperature effects - Property changes with temperature
Prerequisites
GROMACS Installation
Verify GROMACS is available:
# Check GROMACS
gmx --version
# If using modules
module load gromacs
gmx --version
Workspace Setup
# Check MD workspace
echo $MD_WORK_DIR
# Should show: /path/to/workspace/GROMACS
# Ensure directory exists
ls -la $MD_WORK_DIR
Additional Tools
The MD workflow uses:
- Antechamber (AmberTools) - For parameterization
- PACKMOL - For system packing
- tleap - For topology building
# Check Antechamber
which antechamber
# Check PACKMOL
which packmol
Start the Interface
cd OHMind
./start_OHMind_cli.sh
Part 1: System Preparation
Step 1.1: Analyze Monomer
Start by analyzing your monomer structure.
Prompt:
Analyze this AEM monomer SMILES for ion exchange groups:
c1ccc(cc1)C[N+](C)(C)C
Identify:
1. Number of ionizable sites
2. Suggested counterion
3. Recommended water model
Expected Output:
Monomer Analysis:
Structure: Benzyltrimethylammonium
- Ionizable sites: 1 (quaternary ammonium)
- Charge: +1
- Counterion needed: OH⁻ or Cl⁻
Recommendations:
- Water model: SPC/E (good for ion transport)
- Counterion: OH⁻ for AEM simulation
Step 1.2: Build Polymer
Create a polymer chain from the monomer.
Prompt:
Build a polymer from this monomer SMILES:
c1ccc(cc1)C[N+](C)(C)C
Settings:
- Degree of polymerization: 20
- Number of chains: 5
Generate the polymer PDB structure.
Expected Output:
Polymer Built:
- Monomer: Benzyltrimethylammonium
- DP: 20 units per chain
- Chains: 5
- Total atoms: ~2500
- Output: polymer.pdb
Structure saved to: $MD_WORK_DIR/polymer.pdb
Step 1.3: Parameterize Molecule
Generate force field parameters.
Prompt:
Parameterize the polymer using:
1. Antechamber for atom types and charges
2. GAFF2 force field
3. AM1-BCC charge method
Generate a GROMACS-compatible topology file.
What Happens:
- Antechamber assigns atom types
- AM1-BCC calculates partial charges
- tleap builds topology
- Conversion to GROMACS format
Expected Duration: 5-10 minutes
Expected Output:
Parameterization Complete:
Force Field: GAFF2
Charge Method: AM1-BCC
Total Charge: +5 (5 chains × +1)
Files Generated:
- polymer.itp (GROMACS topology)
- forcefield.itp (force field parameters)
- polymer_charged.pdb (structure with charges)
Step 1.4: Create System
Build the complete simulation system.
Prompt:
Create an AEM simulation system with:
- 5 polymer chains (from previous step)
- OH⁻ counterions (5 total for charge neutrality)
- Water content: 20 water molecules per ion
- Water model: SPC/E
Use PACKMOL to pack the system in a cubic box.
Expected Output:
System Created:
Components:
- Polymer chains: 5
- OH⁻ ions: 5
- Water molecules: 100
- Total atoms: ~2800
Box dimensions: 4.5 × 4.5 × 4.5 nm
Density: ~1.1 g/cm³
Files:
- system.pdb (packed structure)
- system.top (system topology)
Part 2: Running Simulations
Step 2.1: Energy Minimization
Minimize the system energy to remove bad contacts.
Prompt:
Run energy minimization on the AEM system:
- Algorithm: Steepest descent
- Maximum steps: 5000
- Force tolerance: 100 kJ/mol/nm
Report the initial and final potential energy.
Expected Output:
Energy Minimization Complete:
Algorithm: Steepest descent
Steps: 2341 (converged)
Energy:
- Initial: 1.23e+06 kJ/mol
- Final: -4.56e+04 kJ/mol
Maximum force: 89.3 kJ/mol/nm (< 100, converged)
Output: em.gro, em.edr
Step 2.2: NVT Equilibration
Equilibrate temperature at constant volume.
Prompt:
Run NVT equilibration:
- Temperature: 400 K
- Duration: 100 ps
- Thermostat: V-rescale
- Time step: 1 fs
Monitor temperature stability.
Expected Duration: 5-10 minutes
Expected Output:
NVT Equilibration Complete:
Settings:
- Temperature target: 400 K
- Duration: 100 ps (100,000 steps)
- Thermostat: V-rescale (τ = 0.1 ps)
Results:
- Average temperature: 399.8 ± 5.2 K
- Temperature stable after ~20 ps
Output: nvt.gro, nvt.edr, nvt.xtc
Step 2.3: NPT Equilibration
Equilibrate pressure at constant temperature.
Prompt:
Run NPT equilibration:
- Temperature: 400 K
- Pressure: 1 bar
- Duration: 200 ps
- Barostat: Parrinello-Rahman
Monitor density and box volume.
Expected Output:
NPT Equilibration Complete:
Settings:
- Temperature: 400 K
- Pressure: 1 bar
- Duration: 200 ps
- Barostat: Parrinello-Rahman (τ = 2.0 ps)
Results:
- Average density: 1.08 ± 0.02 g/cm³
- Average pressure: 1.0 ± 50 bar
- Box volume stable after ~100 ps
Output: npt.gro, npt.edr, npt.xtc
Step 2.4: Production MD
Run the production simulation.
Prompt:
Run production MD simulation:
- Temperature: 400 K
- Pressure: 1 bar
- Duration: 1 ns
- Save trajectory every 1 ps
This will be used for property analysis.
Expected Duration: 30-60 minutes (depends on system size)
Expected Output:
Production MD Complete:
Settings:
- Duration: 1 ns (1,000,000 steps)
- Trajectory frames: 1000
- Temperature: 400.1 ± 4.8 K
- Pressure: 1.2 ± 48 bar
Output:
- md.gro (final structure)
- md.xtc (trajectory, 1000 frames)
- md.edr (energy data)
- md.log (simulation log)
Part 3: Analysis
Step 3.1: Mean Square Displacement
Calculate diffusion coefficients.
Prompt:
Calculate the mean square displacement (MSD) for:
1. OH⁻ ions
2. Water molecules
From the MSD, estimate diffusion coefficients.
Expected Output:
MSD Analysis:
OH⁻ Ions:
- MSD at 1 ns: 45.2 Ų
- Diffusion coefficient: 7.5 × 10⁻⁶ cm²/s
Water:
- MSD at 1 ns: 120.5 Ų
- Diffusion coefficient: 2.0 × 10⁻⁵ cm²/s
Interpretation:
- OH⁻ diffusion is ~3× slower than water
- Values consistent with hydrated membrane
Step 3.2: Radial Distribution Function
Analyze ion-water structure.
Prompt:
Calculate radial distribution functions (RDF) for:
1. N (ammonium) - O (water)
2. OH⁻ - O (water)
Identify hydration shell distances.
Expected Output:
RDF Analysis:
N-O(water):
- First peak: 2.85 Å (first hydration shell)
- Coordination number: 4.2 waters
OH⁻-O(water):
- First peak: 2.65 Å
- Coordination number: 5.8 waters
Interpretation:
- Ammonium groups are well-hydrated
- OH⁻ has strong hydration shell
Step 3.3: Energy Analysis
Analyze system energetics.
Prompt:
Analyze the energy components from the MD simulation:
1. Total energy stability
2. Temperature fluctuations
3. Pressure fluctuations
4. Potential energy breakdown
Expected Output:
Energy Analysis:
Stability:
- Total energy drift: < 0.1% (stable)
- Temperature: 400.1 ± 4.8 K
- Pressure: 1.2 ± 48 bar
Potential Energy Components:
- Bond: 1234 ± 45 kJ/mol
- Angle: 2345 ± 67 kJ/mol
- Dihedral: 567 ± 23 kJ/mol
- Coulomb: -45678 ± 234 kJ/mol
- LJ: 3456 ± 123 kJ/mol
Step 3.4: Property Estimation
Estimate IEM-relevant properties.
Prompt:
From the MD simulation, estimate:
1. Water uptake (λ = waters per ion)
2. Ionic conductivity (from diffusion)
3. Density
4. Swelling ratio (if reference available)
Expected Output:
Property Estimates:
Water Uptake:
- λ = 20 H₂O/ion (as designed)
- Hydration level: Moderate
Ionic Conductivity (Nernst-Einstein):
- σ ≈ 45 mS/cm at 400 K
- Note: Overestimate due to correlation effects
Density:
- ρ = 1.08 g/cm³
Comparison with Experiment:
- Typical AEM conductivity: 20-80 mS/cm
- Estimate is within expected range
Part 4: Advanced Workflows
Step 4.1: Temperature Sweep
Study temperature dependence.
Prompt:
Run a temperature sweep for the AEM system:
- Temperatures: 300 K, 350 K, 400 K
- Duration: 500 ps each
- Analyze OH⁻ diffusion at each temperature
Calculate activation energy for ion transport.
Expected Output:
| Temperature | D(OH⁻) (cm²/s) | ln(D) |
|---|---|---|
| 300 K | 2.1 × 10⁻⁶ | -13.07 |
| 350 K | 4.5 × 10⁻⁶ | -12.31 |
| 400 K | 7.5 × 10⁻⁶ | -11.80 |
Activation Energy: ~15 kJ/mol (Arrhenius fit)
Step 4.2: Water Content Study
Study effect of hydration level.
Prompt:
Compare AEM properties at different water contents:
- λ = 10 (low hydration)
- λ = 20 (moderate)
- λ = 30 (high hydration)
For each, run 500 ps MD at 400 K and compare conductivity.
Expected Output:
| λ (H₂O/ion) | Density (g/cm³) | σ (mS/cm) |
|---|---|---|
| 10 | 1.25 | 25 |
| 20 | 1.08 | 45 |
| 30 | 0.98 | 58 |
Step 4.3: Complete IEM Workflow
Run the full automated workflow.
Prompt:
Run a complete IEM MD workflow from SMILES:
Monomer: c1ccc(cc1)C[N+](C)(C)C
Settings:
- DP: 15
- Chains: 3
- λ: 15
- Temperature: 373 K
- Production: 2 ns
Analyze and report key IEM properties.
Expected Duration: 1-2 hours
Expected Outputs
File Locations
MD simulations create files in:
$MD_WORK_DIR/
├── system_001/
│ ├── polymer.pdb # Initial polymer
│ ├── polymer.itp # Polymer topology
│ ├── system.pdb # Packed system
│ ├── system.top # System topology
│ ├── em.mdp, em.gro # Energy minimization
│ ├── nvt.mdp, nvt.gro # NVT equilibration
│ ├── npt.mdp, npt.gro # NPT equilibration
│ ├── md.mdp # Production parameters
│ ├── md.tpr # Run input
│ ├── md.xtc # Trajectory
│ ├── md.edr # Energies
│ └── md.gro # Final structure
└── analysis/
├── msd.xvg # MSD data
├── rdf.xvg # RDF data
└── energy.xvg # Energy data
Interpreting Results
| Property | Good for AEM | Concerning |
|---|---|---|
| OH⁻ diffusion | > 5×10⁻⁶ cm²/s | < 1×10⁻⁶ cm²/s |
| Conductivity | > 50 mS/cm | < 20 mS/cm |
| Water uptake | 15-25 λ | < 10 or > 40 λ |
Troubleshooting
Common Issues
| Issue | Cause | Solution |
|---|---|---|
| “GROMACS not found” | Not on PATH | module load gromacs or check installation |
| “Topology error” | Missing parameters | Check parameterization step |
| “System exploded” | Bad initial structure | Re-minimize, use smaller timestep |
| “LINCS warning” | Constraint issues | Reduce timestep, check topology |
Checking Simulation Health
Show me the temperature and pressure from the last 100 ps
of my NPT simulation. Are they stable?
Restarting Failed Simulations
My MD simulation crashed at 500 ps. Restart it from the
last checkpoint and continue to 1 ns.
Next Steps
After completing this tutorial:
- Analyze with Multiwfn - Extract snapshots for QM analysis
- Compare systems - Study different polymer architectures
- Validate predictions - Compare with experimental data
Suggested Follow-up Prompts
Extract 5 representative snapshots from my MD trajectory and
run QM calculations on the ion-water clusters to validate
the force field.
Compare the conductivity predictions for three different
cation types attached to the same backbone.
See Also
- MD Agent - Agent capabilities
- GROMACS MCP Server - Available tools
- OHMD Module - MD utilities
- Multi-Step Workflows - Complex pipelines
| *Last updated: 2025-12-23 | OHMind v1.0.0* |